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Mixture Equations of State: 
Composition Dependence s 

M. A. Khan, 2 M. Mannan, 2 L. L. Lee, 2 and K. E. Starling 2 

This paper discusses theoretical models for the composition dependence of equa- 
tions of state and compares the quality of predictions against experimental 
thermodynamic property data. The mean density approximation (MDA) and 
the van der Waals one-fluid (VDW1) model are compared with hybrid mixing 
rules (HMR), in which rigorous composition dependence is used for the second 
and third virial coefficients and the conformal solution model is used for 
equation-of-state density terms beyond the third virial term. It is found that 
when values of unity are used for all binary and three-body unlike interaction 
parameters, calculated densities for methane-normal heptane mixtures have 
average absolute deviations of 3.54% for MDA, 4.04% for VDW1, and 2.59% 
for HMR. When vapor-liquid equilibrium calculations were performed for the 
methane-normal heptane system, average absolute deviations of calculated K 
values from experimental values were 16.7 % for methane and 36.4 % for normal 
heptane using HMR, whereas when conformal solution model (CSM) mixing 
rules were used, the results were 34.8% for methane and 66.7% for normal 
heptane. When the binary interaction parameter for the characterization of 
interaction energies is determined, it is found to be less sensitive to state 
conditions in the case of HMR than either MDA or VDW1. These preliminary 
results suggest the potential of mixture equation-of-state methods which utilize 
rigorous composition dependence for the lower-order virial coeff• 
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1. I N T R O D U C T I O N  

Recen t ly ,  t h e r e  h a s  b e e n  c o n s i d e r a b l e  i n t e r e s t  in  i m p r o v i n g  r e p r e s e n t a t i o n s  

of  the  c o m p o s i t i o n  d e p e n d e n c e  o f  m i x t u r e  e q u a t i o n s  of  s t a t e  [ 1 4 ] .  T h e  
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authors have initiated a study of equation-of-state composition dependence 
based on analysis of real fluid data using the macroscopic analogues of 
various plausible approximations introduced into the statistical mechanical 
expressions for mixture thermodynamic properties [-4]. It has been shown 
that both the mean density approximation and the van der Waals one-fluid 
method are not accurate for describing equation-of-state composition 
dependence for mixtures of large and small molecules, such as the 
methane normal heptane system [4]. The objective of the work presented 
here is to investigate methods for improving mixture equation-of-state 
composition dependence which retain a close relationship to theory while 
closely modeling the empirical data. 

In Section 2, the theoretical mixture equation of state from statistical 
mechanics is reviewed in order to provide a rigorous starting point for the 
presentation. The mean density approximation is presented in Section 3 
and the van der Waals one fluid model is presented in Section 4. In Sec- 
tion 5 new mixture equation-of-state mixing rules, referred to herein as 
hybrid mixing rules, are introduced. The hybrid mixing rules are compared 
with the mean density approximation and van der Waals one-fluid model 
in Section 6 utilizing PVTx data for the methane normal heptane system. 
An evaluation of the hybrid mixing rules for predictions of vaporqiquid 
equilibrium is presented in Section 7 by comparisons with the conformal 
solution model using data for the methane-normal heptane system. Con- 
clusions are presented in Section 8. 

2. THEORETICAL MIXTURE EQUATION OF STATE 

The statistical mechanical expression for the pressure of a fluid 
mixture in terms of the pair potentials, uij, and molecular pair correlation 
functions (pcf), gij, is 

P =1_ p ~ f Ou~j pkT ~ xixj drr--~-r g~(r;p,T,x) (1) 

Fluids for which molecular orientation effects are important would involve 
integration over possible orientations; these are excluded to allow simpler 
equations. Note that the composition dependence in Eq. (1) has an 
"explicit" part, i.e., in the double summation, and an "implicit" part, con- 
tained in the arguments of the pair correlation functions, g~j. The pressure 
equation written out in reduced form for the case in which u o. is a 
two-parameter pair potential involving an energy parameter e U and a size 
parameter c% is the following: 

P 4re (p .G3) /~U (" ,3 (~H~ 
pkT=l-- .~2Zx,x j  ~ jdr*r~j ~r~gu(r/a,j;p,r,x) (2) 
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where r(* = r/a o. and u* = u~/e~j. The principal problem with explicit use of 
Eqs. (1) and (2) is the fact that the dependence of go on composition is not 
known. The integrals in Eq. (2) are functions of temperature, density, and 
composition, denoted here by F~(T, p, x). The mixture equation of state 
therefore can be written in the following form: 

P 4zoo _ 
- 1 - - ~ - ' ~ V x i x j e i j a ~ F u ( T ,  p, x) (3) 

p kT  6kT  ~ 

The composition dependences of various approximate mixture equations of 
state based on Eq. (2) are distinguished by the approximations used for go" 

3. THE M E A N  D E N S I T Y  A P P R O X I M A T I O N  

Approximations for gu based on mappings of g~ on go, the pure fluid 
pair correlation function, have been used extensively for mixture properties. 
In particular, the mean density approximation as proposed by Mansoori 
and Leland [5], for mixtures with two-parameter pair potentials of the 
same form in r~/a U, corresponds to the following relation: 

go(r/aa, p, T, x ) =  go(r/ax, pa 3, kT/e~) (4) 

where go is the pure fluid pair correlation function. According to Eq. (4), 
go = go when r/asj = r/ax, provided the pure fluid reduced temperature is 
kT/e = kT/e o. and the pure fluid reduced density is p* = pa 3. The com- 
monly used relation for a x is 

 3x= 2 s x xJ (st 

which is suggested by consideration of hard sphere mixtures. The use of the 
mean density approximation in Eq. (2) leads to the following mean density 
approximation (MDA) equation of state for mixtures: 

P 
=1 

p kT  6kT  ~ ~ xzxjaija3 Fo(kT/a~, p* (6) 

where Fo(kT/eo., p*) is the pure fluid quantity evaluated at the reduced 
temperature kT/e U and the mean reduced density p*. Thus, the MDA equa- 
tion of state has explicit composition dependence through the quadratic 
dependence on the mole fractions and implicit composition dependence 
through the dependence of the reduced density p* on the composition. 
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4. THE VAN DER WAALS ONE-FLUID MODEL 

The van der Waals one-fluid equation of state for mixtures corresponds 
to the following approximation: 

gij(r/crij; p, T, x) = go(rio%; pa3x, k T/ex) (7) 

where s~ is as yet undefined. The use of this approximation for gu in Eq. (2) 
leads to the following mixture equation of state: 

P - 1 4rip* Z7=1Z~':I  x ix js~ia~Fo(T, ,  p , )  
3 p k T  6T* e~a~ 

(8) 

where T* = kT/sx,  p* = pa3x . 
With the following definition of ex, 

n 

exax= ~ x i x j s j  3 (9) 
i = 1  j = l  

Equation (8) for mixtures becomes conformal with the pure fluid equation 
of state and the van der Waals one-fluid eqution of state for mixtures 
results, 

P 4np* 
1 - ~  Fo(T*, p*) (10) 

p k T  = ol ;~" 

where T* = kT/e x and p* = pa~ and ax and s X are defined by Eqs. (5) and 
(9), respectively. The resulting VDW1 equation has implicit composition 
dependence through the dependence of both the reduced temperature T* 
and the reduced density p*. 

5. HYBRID MIXING RULES 

Neither the MDA nor the VDW1 mixture equation of state is rigorous 
in the composition dependence of the virial coefficients that result. For this 
reason, we have investigated the effects of utilizing the following mixture 
equation of state, which is a hybrid of the virial equation and the confor- 
real solution model: 

P 

p k T  
(11) 

The resulting hybrid mixing rules (HMR) provide rigorous composition 
dependence through the third virial term and the composition dependence 
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of the conformal solution model for higher-order terms. Thus, it is 
anticipated that the low-density region of mixtures can be described more 
adequately by the HMR than the MDA or the VDW1 mixture equations 
of state. 

To illustrate how the HMR mixture equation can be utilized, a 
three-parameter corresponding-states modified BWR equation of state [6] 
which has been used extensively with a conformal solution model (CSM) 
is utilized here. The pure fluid MBWR equation has the form, 

Z = Zo(T* ,  p*) + ,fZT(T*, p*) (12) 

where T* = k T / e  and p* = p a  3. The parameters e, a, and 7 have been 
reported for numerous fluids [6]. For mixture calculations, the interaction 
second virial coefficients, B~, are required, 

Bi j : 3 , f f~jBi j (T*,  "f/j) (13) 

where B* is the reduced interaction second virial coefficient, T* = kT/e~j, 
eo.= (eiiejj) 1/2, a ij= (aii~rjj 1/2, and 'f o.= ('f ii + ,f j j /2 ,  where the subscripts ii 
and j j  refer to the pure component parameters. Binary interaction 
parameters have not been used for the interaction parameters in this initial 
study. The interaction third virial coefficients, C~jk, also are required: 

=6 r~ ,  ~ T *  (14) 

where C,j* is the reduced interaction third virial coefficient, T*k = k T / ~ k ,  
~ijk = Oij~(e~i + ~jj + ~k)/3, auk = (a~ + ajj + a~k)/3 , 7ij~ = (7i~ + ,fjj + ,fkk)/3. 
The parameter O~/k is a three-body unlike interaction parameter for the 
energy parameter e~jk- The reduced virial coefficients are calculated using 
the chosen equation of state, in this case, the MBWR equation [6]. All 
terms in the MBWR equation higher order in density than the third virial 
term are grouped to calculate the term Zz(Tx* , P'x) in Eq. (11). For the 
MBWR equation, this requires calculation of ax, ex, and ,fx, which in the 
present study were calculated using the following mixing rules: 

ox = Z xixj   (is) 
i = 1  i = l  

n n 

6 x i x f i j 6  (16) 
i = 1  i = 1  

, fx~3= E x ,x / /~f l  3 (17) 
i = 1  i = 1  
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where the interaction parameters are defined by the following combining 
rules: 

~ij : ~ (~ii~jj) 1/2 (18) 

aij  ~--- ~ ( a i i a j j )  1/2 (19) 

7ii ~- 7jj (20) 
70-  2 

and ~ are binary interaction parameters. The values of the exponents in 
Eqs. (15)-(17) are different from those defined in the original VDW1 
defined by Leland et al. [7]. It was shown by Lee et al. [8] that predictions 
of vapor liquid equilibrium behavior for mixtures with molecules having 
large size differences can be improved by empirical determination of the 
exponents. We have determined the exponents in the HMR equation in a 
similar manner, with the resultant values shown in Eqs. (15)-(17). 
However, for the conformal solution model (CSM) applied to the total 
equation of state, which is used here for comparison purposes, the 
exponents are the values used by Lee et al. [8], 4.5, 4.5, and 3.5, instead of 
6, 6, and 3, respectively. 

6. C O M P A R I S O N  OF H M R  WITH M D A  A N D  V D W I  

One of the long-range goals of the present ongoing study of the com- 
position dependence of mixture equations of state is that the mixing rules 
and combining rules lead to unlike interaction characterization parameters 
which will be true constants, rather than averages of quantities which are 
actually functions of state variables. When all unlike binary and three-body 
interaction parameters are taken to be unity, the average absolute devia- 
tions of predicted densities from experimental values [9] for the 
methane-normal heptane system are 3.54% for MDA, 4.04% for VDW1, 
and 2.59% for HMR. These results indicate that the use of rigorous 
composition dependence for the second and third virial coefficients, along 
with the use of the conformal solution model for the higher-order 
equation-of-state terms, offers potential advantages over the MDA and 
VDW1 mixtures equations of state when applied to mixtures with large 
molecular size differences. 

7. C O M P A R I S O N  OF H M R  A N D  CSM 

The van der Waals one-fluid model (VDW1) is a form of conformal 
solution model, that is, VDW1 is an attempt to map mixture properties on 
pure fluid properties. It has been noted that for mixtures of hydrocarbons 
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with dissimilar molecular sizes, the exponent 4.5 on ~ in the mixing rules 
for ~r X and ex yields improved results for vapor-liquid equilibrium calcula- 
tions over the VDW1 exponent of 3.0 and that the exponent 3.5 is best for 
7x [-8]. Therefore, for a system such as methane normal heptane, a com- 
parison of the HMR with this conformal solution model (CSM) is a more 
stringent test of HMR than a comparison with VDW1. In this case, the 
results of flash calculations using HMR and CSM were compared with 
vapor-liquid equilibrium data for the methane normal heptane system. 
With all binary and three-body unlike interaction parameters set equal to 
unity, the average absolute deviations of calculated K values from the 
experimental values were, for methane, 16.7% for HMR and 34.8% for 
CSM and, for normal heptane, 36.4% for HMR and 66.7% for CSM. 
Thus, with no parameters determined specifically from the methane-nor- 
mal heptane data, the uncertainties in vapor-liquid equilibrium predictions 
using the HMR model are approximately one-half the uncertainties from 
CSM. Similar results are observed for other binary mixtures of methane 
with the normal paraffin hydrocarbons ethane through normal hexane. It 
is concluded that the HMR model offers advantages over the CSM mixture 
equation of state, especially for mixtures of fluids with large dissimilarities 
in molecular size. 

8. CONCLUSIONS 

The results presented here demonstrate some of the advantages of 
using rigorous composition dependence for second and third virial coef- 
ficients over approximations such as the mean density approximation 
(MDA) and conformal solution models (CSM), including the van der 
Waals one-fluid model (VDWt). The hybrid mixing rules (HMR) presen- 
ted here utilize rigorous second and third virial composition dependence 
and the conformal solution model for higher-order density terms in the 
equation of state. It is found that with all binary and three-body unlike 
interaction parameters set equal to unity, the uncertainties in calculated 
liquid densities and K values using the HMR are roughly one-half the 
uncertainties using the MDA, VDW1, and CSM mixture equations of state. 
These results suggest the potential of mixture equation-of-state methods 
which utilize rigorous composition dependence for the lower order virial 
coefficients. 
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